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the disease. Akin to wearing masks, social distancing successfully reduces the risk of infection.

The results of a survey in 58 cities in China showed that the epidemic would have been more

severe if social distance had been delayed by one day [15]. Likewise, lockdowns essentially stop

the spread of the disease as a way of preventing people with the disease from moving around.

Although such a policy would be economically devastating, it would stop the movement of

infected people, thereby reducing the cost of an outbreak. The actual situation in Wuhan sup-

ports the conclusion [18]. The above measures have a common goal, that is, separating suscep-

tible individuals from infected individuals as soon as possible. In other words, these measures

reduce the contact rate between susceptible and infected individuals. A vital aspect of stopping

the pandemic is ensuring that healthcare resources are allocated effectively and sufficiently. A

growing body of literature on resource distribution has offered insightful advice based on the

results of research [22–25]. When resources for masks are limited, prioritized coverage of the

elderly is the optimal strategy, rather than a random distribution [22]. In addition, limited vac-

cine resource distribution is of primary importance. In almost all circumstances, reducing

fatalities required distributing the vaccine to older adults who are most at risk of death [24].

Among these resources, the factors related to the medical system can not be ignored in that its

capacity to prevent the spread of pandemic diseases is also crucial. If the healthcare system is

broken, the epidemic would bring worse results [26]. Using linear and mixed-integer program-

ming models, the authors found that an optimal configuration could reduce cases in New Jer-

sey, Texas, and Miami by at least 85% [27].

The recent emergence of mutated viruses has brought a major test to humans’ fight against

the epidemic and would bring a more overwhelming wave of the pandemic if some measures

could not

https://doi.org/10.1371/journal.pone.0280067


factors in different populations are ignored; (iii) The re-infected process is ignored [37]; (iv)

Modeling the early stage of COVID-19 ignores vaccinated individuals and reinoculate

individual.

In this paper, we build a game-based SEAIHRD compartment model to characterize the

propagation dynamics of COVID-19. In a healthcare system that has two states: normal opera-

tion and collapse, an individual has a large probability of going to the hospital when it’s run-

ning normally; otherwise, it’s little. When the healthcare system is at normal running, the

patient can get effective treatment. The healthcare system being collapse means the existing

medical system and medical resources cannot meet the needs of patients and can not cope

with the outbreak, and a state that is far beyond the saturation or tolerance limit present, thus

causing the epidemic to be out of control. Thus, we introduce a parameter m to represent indi-

vidual motivation to seek medical care. This parameter can display the difference to seek medi-

cal care in different regions.

This system is partitioned into seven exclusive stages: susceptible (S), exposed (E), asymp-

tomatic (A), symptomatic (I), hospitalized (H), recovered (R), and dead (D). Susceptible indi-

viduals who are not infected by the disease can be infected by infected individuals, namely,

asymptomatic individuals and symptomatic individuals, in many ways. However, they go

through an incubation period before they become infected individuals. Individuals in this

period are known as exposed individuals. Although they already have the virus in their bodies,

the viruses do not come into play and they can not pass it to other susceptible individuals.

After this period, infected individuals can be divided into asymptomatic individuals and symp-

tomatic individuals according to whether their bodies are accompanied by symptoms. Consid-

ering asymptomatic individuals are harder to detect unless they have nucleic acid detection,

we assume that asymptomatic individuals do not go to the hospital voluntarily, thus the differ-

ence between asymptomatic and symptomatic individuals is that only symptomatic individuals

have a choice to go to the hospital for treatment.

The interactions among these healthy statuses are shown in Fig 1. More specifically, suscep-

tible individuals can be infected and become exposed individuals when they encounter

infected individuals with the probability �. The transmission rates are β and θβ, respectively,

when infected by symptomatic and asymptomatic individuals. After the incubation period of

1/σ days, q of the exposed individuals become symptomatic individuals, and the rest turn into

Fig 1. Graphical scheme representing the interactions among different stages of infection in the mathematical

model.

https://doi.org/10.1371/journal.pone.0280067.g001
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asymptomatic individuals. Since the cure rate is lower and the death rate is higher when the

healthcare system collapses. Thus, for symptomatic individuals, whether to go to the hospital

depends on the Fermi function. That is, P(μ2(t), δ2(t)) represents the probability that symp-

tomatic individuals go to the hospital.

Pðm2ðtÞ; d2ðtÞÞ ¼
m

1þ expððd2ðtÞ � m2ðtÞÞ=KÞ
; ð1Þ

where μ2(t) and δ2(t) measure the cure rate and the death rate, which also determine the proba-

bility of hospitalized individuals transforming into recovered individuals and death individu-

als. K is the amplitude of noise or its inverse ratio is the so-called selection intensity, generally

K = 0.1 [38, 39]. Hospitalization is more likely to be chosen when the cure rate exceeds the

death rate in the hospital. According to surveys from different countries [40], we introduce the

regulatory factor of individual will m to regulate the probability that individuals go to the hos-

pital. A large m indicates that individuals are more likely to the hospital.

The mathematical model describing the above process is given in Eq (2). The two time-

varying factors μ2(t) and δ2(t) are dependent on the number of hospitalized individuals H(t)
and the level of medical resources α in the healthcare system. For example, the cure rate is high

and the death rate is low when medical resources are adequate. There are several research pro-

posed a specific functional model for modeling infectious rates and cure rate, and using real

data to estimate the involved parameters [41, 42], however, our model here only uses its depen-

dence on H(t) and α to characterize their relationship and estimate them through the model,

which is more flexible.

In Eq (2), s and r regulate the sensitivity change of the cure rate and death rate, respectively.

Note that μ2(t) and δ2(t) have range where the value of μ2(t) can be replaced by μmin (μmax)

when the cure rate is less

https://doi.org/10.1371/journal.pone.0280067


This model is a bilinear system with nine differential equations. Here, the system is positive,

that is to say, the fraction of all the states and rates are non-negative values. To meet the mass

conservation property of the system, an important rule is that the sum of change from all states

(i.e. sum of the first seven terms on the left side of Eq (2)) equals zeros since

SðtÞ þ EðtÞ þ IðtÞ þ AðtÞ þHðtÞ þ DðtÞ þ RðtÞ ¼ N:

In Eq 2, the death rate and cure rate are dependent on time t which can well reflect the real

situations.

For further analysis, we solve the basic reproductive number of an infection of the system.

The basic reproductive number of an infection is the expected number of cases directly gener-

ated by one case in a population where all individuals are susceptible to infection. To calculate

it, we adopt the next generation matrix approach [46, 47]. By using the notations as [47], it fol-

lows that the matrices F of new infection terms and V of the remaining transfer terms associ-

ated with the model are given:

F ¼

0 b yb

0 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5

ð3Þ

Table 1. The parameter explanation in the model.

Symbol Description

S(t) the fraction of susceptible individuals

E(t) the fraction of exposed individuals

I(t) the fraction of symptomatic individuals

A(t) the fraction of asymptomatic individuals

H(t) the fraction of confirmed individuals that to be tested and to be sent to the hospital

D(t) the fraction of dead individuals

R(t) the fraction of recovered individuals

� the contact rate among infected individuals and susceptible individuals

β infection rate of symptomatic infected

θ the ratio of infection rate of symptomatic infected and infection rate of asymptomatic infected

σ incubation rate for the transition from exposed to infected

m regulatory factor of individual will

δ1 death rate (from infected individuals)

μ1 cure rate (from infected individuals)

δ2(t) death rate (from individuals in the hospital)

μ2(t) cure rate (from individuals in the hospital)

δmax the maximum death rate (from individuals in the hospital)

δmin the minimum of death rate (from individuals in the hospital)

μmax the maximum cure rate (from individuals in the hospital)

μmin the minimum of cure rate (from individuals in the hospital)

q the ratio of symptomatic infection

α the hospital resource level

r regulatory factor of death rate

s regulatory factor of cure rate

https://doi.org/10.1371/journal.pone.0280067.t001
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V ¼

s 0 0

� sqa d1 þ m1 þ Pðm2; d2Þ 0

� sð1 � qÞ 0 d1 þ m1

2

6
6
6
4

3

7
7
7
5

ð4Þ

By solving the maximum eigenvalue of FV � 1
, the basic reproduction number of the model

marked by R0 is given by

R0 ¼
bq

d1 þ m1 þ Pðm2; d2Þ
�

byðq � 1Þ

d1 þ m1

ð5Þ

Results

0.1 Simulation results

In Fig 2, we provide the predicted cumulative number of confirmed cases (left) and deaths

(right) which is the function of m and β. Experience tells us that a pandemic with a low infec-

tious rate can be controlled easily, which can be verified by Fig 2. The medical system remains

stable and in the normal range, even at high values of m, when β is low. A higher value in m
predicts a lower the predicted cumulative number of confirmed cases and deaths. These phe-

nomena indicate that m mitigates pandemic outbreaks given a less rate of transmission. The

impact of m can be double-edged when infection rates are high. On the one hand, lower levels

of it can contain outbreaks and keep the cumulative number of deaths low. On the other hand,

high values in m can, however, cause an increase in confirmed cases and deaths due to a bro-

ken medical system.

We study how factors related to medical resources affect the diseases results in Fig 3. The

critical factors in the model are m and α. A high m indicates that infected individuals prefer to

go to the hospital. α represents the medical resource level. When the total number of infections

Fig 2. The predicted cumulative number of confirmed cases (left) and death (right) as a function of the regulatory factor of individuals will m
and β. Other parameters are shown in Table 2.

https://doi.org/10.1371/journal.pone.0280067.g002
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is constant, the increment in α pushes the cumulative number of confirmed cases to higher

values until it reaches a stable value and makes the cumulative number of death cases reach a

low value, suggesting adequate medical treatment can reduce death rates. While, once the

medical resource is above a certain level, it does not work. In other words, even given α a

higher value, the cumulative number of confirmed cases and death stay at certain values.

These results can be easily understood if we notice that increasing proportions from the

infected individuals to patients in the hospital is a constant value. The fraction of patients

depends on m. Under the normal operating condition of the medical system, improving the

value of m always lowers the cumulative number of confirmed cases and death, indicating that

a higher of m facilitates the control of the pandemic.

In Fig 4, we plotted the basic reproductive number R0 for different values of β and m. Rea-

sonably, for all values of m, the R0 grows with the increase in virus transmissibility. m also

plays an inhibitory role in the spreading dynamics. In other words, m support a low epidemic

size and thus also a smaller R0.

0.2 Real example

As examples of the performance of the model, we examine the early stage of the pandemic in

eight countries (the United States of America, Brazil, Britain, China, Germany, Italy, Japan,

and Spanish). In these countries, the medical resource level presents an optimal value in Japan.

Thus, in this section, we select Japan as an example to verify our model. The parameters in

Table 1 are estimated by minimizing the mean square error between predicted values from the

model (2) and real observations and solved by grid search algorithm [48]. The estimators of

parameters are given in Table 3, where we only selected the data in the early 90 days after the

outbreak since our purpose is to study the maintenance of medical resources in the early stage

Fig 3. The predicted cumulative number of confirmed cases (left) and death (right) as a function of the hospital resource level α for different m. Other

parameters are shown in Table 2.

https://doi.org/10.1371/journal.pone.0280067.g003
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of the outbreak of COVID-19. The details of data collection and algorithm are given in addi-

tional information. At the initialized time, only infected individuals and susceptible show in

the system, and the initial number of infected individuals are the same as the initial infected

cases reported by governments (the time that cases are reported by governments is listed in

Fig 4. The effect of behavior on the basic reproductive number. The basic reproductive number R0 as function of

regulatory factor of hospital resource level m and β. Other parameters are shown in Table 2.

https://doi.org/10.1371/journal.pone.0280067.g004

Table 2. Parameter in the model.

Symbol Value

N 200000000

μmax 0.3

μmin 0.05

μ1 0.096 [43]

δmax 0.02

δmin 0.005

δ1 0.00625 [43]

α 0.01

β 1.02 [43]

q 0.18 [44]

m 0.31

r 0.2

s 0.3

� 0.000056 [45]

σ 1/7 [45]

θ 0.447 [44]

https://doi.org/10.1371/journal.pone.0280067.t002
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Table 3). In the left panel of Fig 5, the blue points represent realistic data and the red line repre-

sents the fitted data. As shown in the left panel of Fig 5, our model can fit the data very well on

the cumulative number of diagnoses.

Furthermore, we look at the epidemic severity and estimated capacity of medical resources.

Medical resource capacity is given by αN in our model which is the maximum number of peo-

ple that can be accommodated by the hospital. We plot αN and hospitalized number with the

time in the right panel of Fig 5 to show the number of medical resources. For convenience,

we set the days that the first case was reported by the government as day 1. Except for the

Table 3. Parameter estimation.

Symbol Fermi function conformity-driven No behavioral

μmax 0.16 0.3 0.3

μmin 0.1 0.005 0.1

μ1 0.1 0.01 0.01

δmax 0.025 0.06 0.06

δmin 0.01 0.005 0.0015

δ1 0.02 0.00625 0.00625

α 0.01 0.01 0.01

β 1 1 1

q 0.18 0.18 0.18

m 0.31 0.53 -

r 1.4e-3 0.2 1.4e-3

s 0.3 0.3 0.3

� 1.9e-4 1.38e-4 1.3e-4

σ 0.6 0.6 0.6

θ 1e-5 1e-5 1e-5

Initial Data Jan. 6th Jan. 6th Jan. 6th

https://doi.org/10.1371/journal.pone.0280067.t003

Fig 5. In the left panel, the cumulative number of confirmed cases in Japan. The solid lines are obtained from the theoretical model, and the dots

correspond to the real cases. In the right panel, the evolution of the in-patient number H (the bottom line) and medical resource capacity αN (the

top line). The parameters in this model are selected from the fitting results in Table 3.

https://doi.org/10.1371/journal.pone.0280067.g005
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cumulative number of confirmed cases that can be regarded as a general measure of the epi-

demic severity, the days, in-patient number exceeds the local medical resources capacity, can

also be an important index. In fact, Japan has its hospitalized patients (brown line) low obvi-

ously than the medical resource capacity whose value is 2530 (green line). The number of

people infected is small, and the virus epidemic was not serious in the early stage of the virus

outbreak.

The results of the above analyses indicate that our model accurately predicts confirmed

cases in Japan. To further verify this approach, analysis for more countries is studied. These

countries include the United States of America, Brazil, Germany, and Italy. S1 Table in S1 File

summarizes the values of these parameters. In S1 Fig in S1 File, the blue points represent realis-

tic data and the red line represents the fitted data. As shown in S1 Fig in S1 File, our model can

fit the data very well on the cumulative number of diagnoses and the results of the experiment

show that the proposed approach has good robustness. In this section, we consider only the

Fermi function as a decision function. We also present results based on conformity-driven

update rules and rules without behavioral aspects. Values of the estimated parameter can be

seen in Table 3. These results indicate that high consistency between predicted cases and real

data, see S2 Fig in S1 File. See S1 File (Robust Analysis) for details.

In Fig 6, we study the impact of the hospital resource level α on the pandemic of COVID-19

through simulations. Here, we vary the values of α but fix the other parameters at their esti-

mated values in Table 3. Through simulations, we obtain the changes in the cumulative num-

ber of recovery and dead individuals in dependence on α over time in Fig 6. With the increase

in medical resources, the number of recoveries increased but the number of deaths decreased,

which conforms to common sense. In general, it is shown that the cumulative number of

death is more sensitive than that of the cumulative number of recoveries, which implies

that the medical resource level is important for decreasing the number of deaths. For the

Fig 6. The predicted cumulative number of recovery and death in dependence on the hospital resource level α over time in Japan. The real situation

replaced by the parameters fitted by the model (shown in Table 3) are marked with solid black lines. Note that the curves of predicted cumulative numbers of

recovery are overlapped or indistinguishable for some different α.

https://doi.org/10.1371/journal.pone.0280067.g006
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cumulative number of deaths, the situation of Japan can not be improved much even increase

the medical resource levels but will cause matter if decreasing the medical resource level,

where two curves with the high level (α = 0.02, 0.04) overlap (or almost overlap) with real case

(α = 0.01).

According to the above discussion, we show that α has a remarkable effect on the cumula-

tive number of recoveries and deaths, as illustrated in Fig 6. To reveal the combined effect of

medical factors, we plot the cumulative number of recoveries (see left panel of Fig 7) and

deaths (see right panel of Fig 7) as a function of the hospital resource level α and m. It is indi-

cated by Fig 7 that improving m and α can ease outbreak. Whether increment occurs at α or

m, it always produces extremely useful results where rates in cumulative morbidity and mortal-

ity reduce both. Whenever α and m exceed some limits, the pandemic level and the number of

dead converge to zero, indicating that COVID-19 has disappeared. The one indicator (cumula-

tive number of recoveries), experiences three-stage as α increasing: slow-growth, fast-growth,

and second slow-growth. In the first stage, the cumulative number of recoveries increases

gently as α increases. In the second stage, it climbs faster comparing the previous phase. At the

last stage, the growth rate in the indicator becomes gentle, even nil with α increasing. For the

lower-level regulatory factor of individuals will m, the toll is great. In particular, in the condi-

tion of m� 0.1, the highest cumulative death rate shows up when α = 0.03.

In Fig 8, the cure rate and mortality as a function of time are listed. The trends in two rates

with time present a similar variation and shows a negative relationship. More specifically, the

cure rate goes to rise and mortality falls off at the same times for different α. The mortality

presents a stable decrease with time and the difference for various α is obvious.

In addition, we further consider the effect of the contact rate among infected and suscepti-

ble individuals and display the temporal evolution of the cumulative number of recovery and

dead individuals in dependence on � in Fig 9. It is clear that a high contact rate increases obvi-

ously the cumulative number of recoveries and deaths. The relatively high contact rate leads to

a high cumulative recovery number because the total number of infected groups has increased

at this time. The cumulative number of recoveries and the number of deaths have a trend of

slowing down.

Fig 7. The predicted cumulative number of recovery (left) and death (right) as a function of the hospital resource level α and regulatory factor of individual

will m in Japan. Other parameters are shown in

https://doi.org/10.1371/journal.pone.0280067.g007
https://doi.org/10.1371/journal.pone.0280067


The evolution of the basic reproductive number R0 is shown in Fig 10. Although R0

increases again at the end of the early stage in Japan, its value does not exceed 2.3, which is also

a lower level of the basic reproductive number. Thus, the epidemic in Japan is well controlled

in the early stage.

Fig 8. The evolution of the cure rate and mortality. The parameters in this model are selected from the fitting results in Table 3.

https://doi.org/10.1371/journal.pone.0280067.g008

Fig 9. The temporal evolution of the cumulative number of recovery and dead individuals predicted in dependence on contact rate �. The real

situation replaced by the parameters fitted by the model (shown in Table 3) are marked with solid black lines.

https://doi.org/10.1371/journal.pone.0280067.g009
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Conclusion

Previous works [49–52] have proved that medical resources appear some deficiencies when

facing the pandemic, such as unfair allocation of scarce medical resources [50], medical

resource deficiency [53], and so on, which will seriously reduce the efficiency of epidemic pre-

vention. In this work, we propose the game-based SEAIHRD model with adjustable hospitali-

zation rates to describe the dynamics of COVID-19. This model accounts for the effects of

medical resource and incorporate the strategy of the susceptible patient into the model using

the evolutionary game method. We also assume the cure rate and mortality are time-varying

which is more reasonable in a realistic situation. By extensive simulation, we find that the role

of α has limited. Once α is higher than certain values, it has little impact on the cumulative

number of confirmed cases and death. The effect of α depends on the rate to go to the hospital.

When the system is normal, the m play a positive role. However, facing the pandemic with a

high infectious rate, m is a two-edged sword. A low level of m can contain the pandemic, but a

high level makes the pandemic worse. To verify our model, we use real data to obtain the

parameter estimates that can fit the model well. Through simulations, the number of medical

resources is also assessed. The results show that Japan still has room to improve its medical

resources to contain the pandemic efficiently. The findings bring a perspective to understand-

ing the relationship between the transmission of epidemic and human behaviors. Our model

provides an available tool to assess whether medical resources are adequate when facing a

pandemic.

Pandemic containment depends on medical resources, government measures, human

behaviors, and many other factors [54–58]. When an outbreak occurs, the breakdown of the

health system will indirectly accelerate the outbreak epidemic. Therefore, how to evaluate the

level of the medical system quickly and accurately can not only ensure the sufficiency of

medical resources but also avoid excessive waste of resources. We only list the lines graph in

studying the evolutionary dynamics of the pandemic, the phase graph also can be calculated

similarly for involved parameters but is omitted in this paper since the lines graphs are enough

Fig 10. The evolution of the basic reproductive number R0. The parameters in this model are selected from the

fitting results in Table 3.

https://doi.org/10.1371/journal.pone.0280067.g010
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to study the problems we are interested in. In addition, we perform a sensitivity analysis with

respect to model parameters in the above results.
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